Skip to contents

Density, distribution function, quantile function, and random generation for the truncated Poisson distribution with parameter lambda, truncated to the interval (lower, upper].

Usage

dtpois(x, lambda, lower, upper, log = FALSE)

ptpois(q, lambda, lower, upper, lower.tail = TRUE, log.p = FALSE)

qtpois(p, lambda, lower, upper, lower.tail = TRUE, log.p = FALSE)

rtpois(n, lambda, lower, upper)

Arguments

x

vector of (non-negative integer) quantiles.

lambda

vector of (non-negative) Poisson means.

lower

vector of lower truncation bounds (exclusive).

upper

vector of upper truncation bounds (inclusive).

log

logical; if TRUE, probabilities p are given as log(p).

q

vector of quantiles.

lower.tail

logical; if TRUE (default), probabilities are \(P[X \le x]\), otherwise, \(P[X > x]\).

log.p

logical; if TRUE, probabilities p are given as log(p).

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

Value

dtpois gives the density.

ptpois gives the distribution function.

qtpois gives the quantile function.

rtpois generates random deviates.

Details

The truncated Poisson distribution has density $$f(x) = \frac{P(X = x)}{P(a < X \le b)}$$ for \(x \in \{a+1, a+2, \ldots, b\}\), where \(X \sim \text{Poisson}(\lambda)\), \(a\) is the lower bound and \(b\) is the upper bound.

See also

ptpois, qtpois, rtpois

Examples

# Density of truncated Poisson (lambda=5, truncated to (0, 10])
dtpois(1:10, lambda = 5, lower = 0, upper = 10)
#>  [1] 0.03439248 0.08598121 0.14330202 0.17912752 0.17912752 0.14927293
#>  [7] 0.10662352 0.06663970 0.03702206 0.01851103

# CDF of truncated Poisson
ptpois(3, lambda = 5, lower = 0, upper = 10)
#> [1] 0.2636757

# Quantile function of truncated Poisson
qtpois(0.5, lambda = 5, lower = 0, upper = 10)
#> [1] 5

# Random generation from truncated Poisson
rtpois(10, lambda = 5, lower = 0, upper = 10)
#>  [1] 5 2 5 6 4 5 5 3 8 4