phpe: Fit Proportional Hazards Regression Model with Piecewise Exponential baseline distribution.
Source:R/phpe.R
phpe.Rd
phpe: Fit Proportional Hazards Regression Model with Piecewise Exponential baseline distribution.
Arguments
- formula
an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.
- data
an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which phpe is called.
- n_int
number of intervals of the PE distribution. If NULL, default value (square root of n) is used.
- rho
the time grid of the PE distribution. If NULL, the function timeGrid is used to compute rho.
- tau
the maximum time of follow-up. If NULL, tau = max(time), where time is the vector of observed survival times.
- hessian
logical; If TRUE (default), the hessian matrix is returned when approach="mle".
- approach
approach to be used to fit the model (mle: maximum likelihood; bayes: Bayesian approach).
- hyper_parms
a list containing the hyper-parameters of the prior distributions (when approach = "bayes"). If not specified, default values are used.
- ...
Arguments passed to either `rstan::optimizing` or `rstan::sampling` .
Examples
# \donttest{
# ML approach:
library(YPPE)
mle <- phpe(Surv(time, status)~arm, data=ipass, n_int=10, approach="mle")
summary(mle)
#> Call:
#> phpe(formula = Surv(time, status) ~ arm, data = ipass, n_int = 10,
#> approach = "mle")
#>
#> Proportional hazards coefficients:
#> Estimate StdErr z.value p.value
#> arm -0.310926 0.066011 -4.7102 2.475e-06 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> ---
#> loglik = -2810.835 AIC = 5643.671
# Bayesian approach:
bayes <- phpe(Surv(time, status)~arm, data=ipass, n_int=10, approach="bayes")
#>
#> SAMPLING FOR MODEL 'yppe' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0.000373 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 3.73 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 2.38 seconds (Warm-up)
#> Chain 1: 2.212 seconds (Sampling)
#> Chain 1: 4.592 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'yppe' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 0.000314 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 3.14 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 2.507 seconds (Warm-up)
#> Chain 2: 2.186 seconds (Sampling)
#> Chain 2: 4.693 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'yppe' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 0.000308 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 3.08 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 2.372 seconds (Warm-up)
#> Chain 3: 2.195 seconds (Sampling)
#> Chain 3: 4.567 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'yppe' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 0.000344 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 3.44 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 2.509 seconds (Warm-up)
#> Chain 4: 2.237 seconds (Sampling)
#> Chain 4: 4.746 seconds (Total)
#> Chain 4:
summary(bayes)
#> Call:
#> phpe(formula = Surv(time, status) ~ arm, data = ipass, n_int = 10,
#> approach = "bayes")
#>
#> Proportional hazards coefficients:
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
#> arm -0.311 0.001 0.066 -0.442 -0.356 -0.311 -0.265 -0.185 3636.82 1
#> ---
#> Inference for Stan model: yppe.
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> post-warmup draws per chain=1000, total post-warmup draws=4000.
#>
# }