Skip to contents

Probability function, distribution function, quantile function and random generation for the distribution with parameters alpha and gamma.

Usage

dgompertz(x, alpha = 1, gamma = 1, log = FALSE, ...)

pgompertz(q, alpha = 1, gamma = 1, lower.tail = TRUE, log.p = FALSE, ...)

qgompertz(p, alpha = 1, gamma = 1, lower.tail = FALSE, log.p = FALSE, ...)

rgompertz(n, alpha = 1, gamma = 1, ...)

Arguments

x

vector of (non-negative integer) quantiles.

alpha

shape parameter of the distribution (alpha > 0).

gamma

scale parameter of the distribution (gamma > 0).

log, log.p

logical; if TRUE, probabilities p are given as log(p).

...

further arguments passed to other methods.

q

vector of quantiles.

lower.tail

logical; if TRUE (default), probabilities are \(P[X \le x]\); otherwise, \(P[X > x]\).

p

vector of probabilities.

n

number of random values to return.

Value

dgompertz gives the (log) probability function, pgompertz gives the (log) distribution function, qgompertz gives the quantile function, and rgompertz generates random deviates.

Details

Probability density function: $$ f(x|\alpha, \gamma) = \alpha\gamma \exp\{\gamma x - \alpha(e^{\gamma x} - 1)\}I_{[0, \infty)}(x), $$ for \(\alpha>0\) and \(\gamma>0\).

Distribution function: $$ F(x|\alpha, \gamma) = 1 - \exp\{- \alpha(e^{\gamma x} - 1)\}, $$ for \(x>0\), \(\alpha>0\) and \(\gamma>0\).