Computes the crossing survival times
Usage
# S3 method for class 'survstan'
cross_time(
object,
newdata1,
newdata2,
conf.level = 0.95,
nboot = 1000,
cores = 1,
...
)
Arguments
- object
an object of class survstan
- newdata1
a data frame containing the first set of explanatory variables
- newdata2
a data frame containing the second set of explanatory variables
- conf.level
level of the confidence/credible intervals
- nboot
number of bootstrap samples (default nboot=1000).
- cores
number of cores to be used in the bootstrap sampling; default is 1 core;
- ...
further arguments passed to or from other methods.
Examples
# \donttest{
library(survstan)
data(ipass)
fit <- ypreg(Surv(time, status)~arm, data=ipass, baseline = "weibull")
summary(fit)
#> Call:
#> ypreg(formula = Surv(time, status) ~ arm, data = ipass, baseline = "weibull")
#>
#> Yang & Prentice model fit with weibull baseline distribution:
#>
#> Regression coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> short-arm 1.361063 0.182368 7.4633 8.44e-14 ***
#> long-arm -1.365391 0.082943 -16.4619 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Baseline parameters:
#> Estimate Std. Error 2.5% 97.5%
#> alpha 1.846062 0.060577 1.731071 1.9687
#> gamma 6.961753 0.166121 6.643658 7.2951
#> ---
#> loglik = -2772.375 AIC = 5552.751
newdata1 <- data.frame(arm=0)
newdata2 <- data.frame(arm=1)
tcross <- cross_time(fit, newdata1, newdata2, nboot = 10)
#> Please, be patient!!!
#> Bootstrap samples draw using 1 core
tcross
#> Est. 2.5% 97.5%
#> 1 5.867165 NA NA
# }