The Generalized Gamma Distribution (Stacy's original parametrization)
Source:R/ggstacy.R
ggstacy.Rd
Probability function, distribution function, quantile function and random generation for the distribution with parameters alpha, gamma and kappa.
Usage
dggstacy(x, alpha, gamma, kappa, log = FALSE)
pggstacy(q, alpha, gamma, kappa, log.p = FALSE, lower.tail = TRUE)
qggstacy(
p,
alpha = 1,
gamma = 1,
kappa = 1,
log.p = FALSE,
lower.tail = TRUE,
...
)
rggstacy(n, alpha = 1, gamma = 1, kappa = 1, ...)
Arguments
- x
vector of (non-negative integer) quantiles.
- alpha
shape parameter of the distribution (alpha > 0).
- gamma
scale parameter of the distribution (gamma > 0).
- kappa
shape parameter of the distribution (kappa > 0).
- log, log.p
logical; if TRUE, probabilities p are given as log(p).
- q
vector of quantiles.
- lower.tail
logical; if TRUE (default), probabilities are \(P[X \le x]\); otherwise, \(P[X > x]\).
- p
vector of probabilities.
- ...
further arguments passed to other methods.
- n
number of random values to return.
Value
dggstacy gives the (log) probability function, pggstacy gives the (log) distribution function, qggstacy gives the quantile function, and rggstacy generates random deviates.
Details
Probability density function: $$ f(x|\alpha, \gamma, \kappa) = \frac{\kappa}{\gamma^{\alpha}\Gamma(\alpha/\kappa)}x^{\alpha-1}\exp\left\{-\left(\frac{x}{\gamma}\right)^{\kappa}\right\}I_{[0, \infty)}(x), $$ for \(\alpha>0\), \(\gamma>0\) and \(\kappa>0\).
Distribution function: $$ F(t|\alpha, \gamma, \kappa) = F_{G}(x|\nu, 1), $$ where \(x = \displaystyle\left(\frac{t}{\gamma}\right)^\kappa\), and \(F_{G}(\cdot|\nu, 1)\) corresponds to the distribution function of a gamma distribution with shape parameter \(\nu = \alpha/\gamma\) and scale parameter equals to 1.