library(planex)
#> Loading required package: dplyr
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
#> Loading required package: ggplot2
library(tidyverse)
#> ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
#>  forcats   1.0.0      stringr   1.5.1
#>  lubridate 1.9.3      tibble    3.2.1
#>  purrr     1.0.2      tidyr     1.3.1
#>  readr     2.1.5
#> ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
#>  dplyr::filter() masks stats::filter()
#>  dplyr::lag()    masks stats::lag()
#>  Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

data(fibras)
glimpse(fibras)
#> Rows: 15
#> Columns: 3
#> $ maquina  <int> 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3
#> $ diametro <int> 20, 25, 24, 25, 32, 22, 28, 22, 30, 28, 21, 23, 26, 21, 15
#> $ forca    <int> 36, 41, 39, 42, 49, 40, 48, 39, 45, 44, 35, 37, 42, 34, 32

fibras <- fibras %>%
  mutate(
    maquina = as.factor(maquina)
  )

fit <- aov(forca ~ diametro + maquina, data = fibras)
testResiduals(fit)
#> 
#>  Shapiro-Wilk normality test
#> 
#> data:  resid
#> W = 0.96159, p-value = 0.7201
#> 
#> ------------------------------------------ 
#> Bartlett test of Homogeneity of Variances: 
#>         Bartlett's K-squared df   p.value
#> maquina             1.548563  2 0.4610348
#> 
#> ----------------------------------------------- 
#> Durbin-Watson Test for Autocorrelated Errors: 
#>  lag Autocorrelation D-W Statistic p-value
#>    1     -0.03469267       1.93149   0.472
#>  Alternative hypothesis: rho != 0