library(planex)
#> Loading required package: dplyr
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
#> Loading required package: ggplot2
library(tidyverse)
#> ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
#>  forcats   1.0.0      stringr   1.5.1
#>  lubridate 1.9.3      tibble    3.2.1
#>  purrr     1.0.2      tidyr     1.3.1
#>  readr     2.1.5
#> ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
#>  dplyr::filter() masks stats::filter()
#>  dplyr::lag()    masks stats::lag()
#>  Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

library(planex)
library(tidyverse)

data(rendimento2k)
glimpse(rendimento2k)
#> Rows: 12
#> Columns: 3
#> $ rendimento  <int> 28, 36, 18, 31, 25, 32, 19, 30, 27, 32, 23, 29
#> $ reagente    <factor2k> -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1
#> $ catalisador <factor2k> -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1

fit <- aov(rendimento ~ reagente*catalisador, data=rendimento2k)
testResiduals(fit)
#> 
#>  Shapiro-Wilk normality test
#> 
#> data:  resid
#> W = 0.906, p-value = 0.1895
#> 
#> ------------------------------------------ 
#> Bartlett test of Homogeneity of Variances: 
#>             Bartlett's K-squared df   p.value
#> reagente             0.169806150  1 0.6802841
#> catalisador          0.002058164  1 0.9638148
#> 
#> ----------------------------------------------- 
#> Durbin-Watson Test for Autocorrelated Errors: 
#>  lag Autocorrelation D-W Statistic p-value
#>    1      -0.2978723      2.507092   0.324
#>  Alternative hypothesis: rho != 0

#> Don't know how to automatically pick scale for object of type <factor2k>.
#> Defaulting to continuous.

#> Don't know how to automatically pick scale for object of type <factor2k>.
#> Defaulting to continuous.